
Open Science Grid Submitting Tutorial Test -- 2022

What is the Open Science Grid?

The OSG consortium of research collaborations, campuses, national laboratories, and software providers

is dedicated to the advancement of all open science via the practice of distributed High Throughput

Computing (dHTC), and to the advancement of its state of the art.

What is the Open Science Pool?

The OSPool provides researchers with fair-share access to computing and data capacity

powered by distributed high-throughput computing (dHTC) technologies.

• Open for any scientist or group, of all disciplines, doing open science in the US.

• Built to run independent computations on a massive scale.

• The OSPool is built from resources contributed by university campuses, government-supported

supercomputing facilities and research collaborations

• Resources are assigned on a fair-share basis at no cost to researchers; no allocation process is

required.

Recommended Video Guide: https://www.youtube.com/watch?v=9896xAhT4dY

Video discusses:

- HTCondor History and Status

- Terminology

- Job Matching & Execution

- Basic Submit File

- Job Idle, Running & Completes

Can I submit to the Open Science Pool?

1. Registering and getting assigned to a project on OSG connect

a. Prior to submitting jobs on the OSPool, each individual must:

i. Register for an account,

ii. Complete the Orientation Meeting (potentially waived)

iii. Get account approved

iv. Get assigned to a project.

b. If these steps are not completed, please refer to the Open Science Grid Before

Submitting Documentation on how to proceed.

2. Join and Use a Project to submit in OSG Connect

a. The OSG Connect team assigns individual user accounts to "projects". These projects are

a way to track usage hours and capture information about the types of research using OSG

Connect. A project typically corresponds to a research group headed by a single PI, but can

sometimes represent a long-term multi-institutional project or some other grouping. You

must be a member of a project before you can use OSG Connect to submit jobs.

i. If you are the first member of your research group / team to use the OSG through

OSG Connect, a new project will be created for you. You will need to provide the

following information to do so:

1. Project Name

2. PI (Principal Investigator) Name

3. PI (Principal Investigator) Email

4. PI (Principal Investigator) Organization

https://opensciencegrid.org/
https://htcondor.readthedocs.io/en/latest/overview/high-throughput-computing-requirements.html
https://opensciencegrid.org/services/open_science_pool.html#what-types-of-work-run-well-on-the-ospool
https://www.youtube.com/watch?v=9896xAhT4dY
https://raptor.fiu.edu/wp-content/uploads/2022/09/Open-Science-Grid-Before-Submitting-Document-September-2022.pdf
https://raptor.fiu.edu/wp-content/uploads/2022/09/Open-Science-Grid-Before-Submitting-Document-September-2022.pdf

Open Science Grid Submitting Tutorial Test -- 2022

5. PI (Principal Investigator) Department

6. Field of Science:

a. Selected from https://osp.unm.edu/pi-resources/nsf-research-

classifications.html

7. Project Description:

a. Few sentences describing the project you are researching for

ii. If you know that other members of your research group have used OSG Connect

in the past, you can likely join a pre-existing group. Provide the name of your

institution and PI to the OSG Connect team (if you haven't already) and we can

confirm.

b. Setting up your OSG Connect Project

i. Job submission on OSG Connect requires a project be assigned to your account on

the login node. This can be set after you have been added to a project as described

above.

ii. Option 1: (Preferred Method)

1. Sign in to your login node

2. Open a Terminal and Type the following into the terminal

a. ssh <your_osg_connect_username>@<your_osg_login_node>

i. It will ask for the passphrase for your ssh key (if you set

one) and then you should be logged in.

3. When successfully logged on, your screen should reassemble to some

degree

4. After successfully logging in type:

a. $ connect project

b. You should see a list of projects that you have joined. Most often

there will only be one option! Make sure the right project is

highlighted and press "enter" to save that choice.

Open Science Grid Submitting Tutorial Test -- 2022

iii. Option 2:

1. If need to run jobs under a different project you are a member of (not

your default), you can manually set the project for those jobs by putting

this option in the submit file:

a. +ProjectName="ProjectName"

3. Submitting Jobs using tutorial Quickstart

i. This is a very basic tutorial, normally used to ensure that the user is able to submit

jobs to the OS Pool and

ii. Login to OSG using the login node

1. ssh <your_osg_connect_username>@<your_osg_login_node>

iii. Pre-Typed Setup

1. Install tutorial into your home directory on the login node

a. Type $ tutorial into the terminal of you home directory

i. A list of currently available tutorials will appear

b. Proceed by downloading and running the Quickstart tutorial

i. $ tutorial quickstart

ii. $ cd tutorial-quickstart

iv. Manual Setup

1. $ mkdir tutorial-quickstart

2. $ cd tutorial-quickstart

v. Submission of Job 1:

1. Inside the tutorial directory that you created or installed previously, let's create

a test script to execute as your job. For pretyped setup, this is the short.sh file:

a. #!/bin/bash

b. # short.sh: a short discovery job

c. printf "Start time: "; /bin/date

d. printf "Job is running on node: "; /bin/hostname

e. printf "Job running as user: "; /usr/bin/id

f. printf "Job is running in directory: "; /bin/pwd

g. echo

h. echo "Working hard..."

i. sleep 20

j. echo "Science complete!"

Open Science Grid Submitting Tutorial Test -- 2022

2. Make the script executable

a. $chmod +x short.sh

vi. Running the Job Locally

1. When setting up a new job submission, it's important to test your job outside of

HTCondor before submitting into the Open Science Pool.

a. $./short.sh

b. When completed, “Science Complete” will be printed on the terminal

vii. Create an HTCondor Submit File

1. Let's create a simple (if verbose) HTCondor submit file.

a. This can be found in tutorial01.submit. (Pre-typed version)

b. HTC Condor Submit File

i. Bolded sections MUST be included in the Submit File

ii. executable = short.sh

1. Our executable is the main program or script that

we've created to do the 'work' of a single job.

iii. error = short.error

iv. output = short.output

v. log = short.log

1. # We need to name the files that HTCondor should

create to save the terminal output (stdout) and error

(stderr) created by our job. Similarly, we need to name

the log file where HTCondor will save information

about job execution steps.

vi. request_cpus = 1

vii. request_memory = 1 MB

viii. request_disk = 1 MB

1. We need to request the resources that this job will

need:

ix. queue 1

1. The last line of a submit file indicates how many jobs

of the above description should be queued. We'll start

with one job.

2. Submit the job using:

a. $ condor_submit tutorial01.submit

viii. Checking the job Status

1. To check the status of any job submitted, users can use

a. $ condor_q

i. You can also get status on a specific job cluster:

1. condor_q (job_id)

ii. Note the DONE, RUN, and IDLE columns. Your job will be

listed in the IDLE column if it hasn't started yet. If it's

currently scheduled and running, it will appear in the RUN

https://manpages.ubuntu.com/manpages/xenial/man1/chmod.1.html

Open Science Grid Submitting Tutorial Test -- 2022

column. As it finishes up, it will then show in the DONE

column. Once the job completes completely, it will not appear

in condor_q.

iii. Let's wait for your job to finish – that is, for condor_q not to

show the job in its output. A useful tool for this is watch – it

runs a program repeatedly, letting you see how the output

differs at fixed time intervals.

b. $ condor_watch_q (preferred)

2. When your job has completed, it will disappear from the list.

a. Note: To close watch, hold down Ctrl and press C.

ix. Job History

1. Once your job has finished, you can get information about its execution from

the condor_history command:

a. $ condor_history (Job ID)

x. Job Output

1. Once your job has finished, you can look at the files that HTCondor has

returned to the working directory. The names of these files were specified in

our submit file. If everything was successful, it should have returned:

a. a log file from HTCondor for the job cluster: short.log

b. an output file for each job's output: short.output

c. an error file for each job's errors: short.error

2. Reading the Output

a. $ cat short.output

b. The file should produce the following output

i. Start time: Mon Dec 10 20:18:56 UTC 2018

ii. Job is running on node: osg-84086-0-cmswn2030.fnal.gov

iii. Job running as user: uid=12740(osg) gid=9652(osg)

groups=9652(osg)

Open Science Grid Submitting Tutorial Test -- 2022

iv. Job is running in directory: /srv

v. Working hard...

vi. Science complete!

b. Passing Arguments to Executables – Tutorial Quick Start

i. Sometimes it's useful to pass arguments to your executable from your submit file.

For example, you might want to use the same job script for more than one run,

varying only the parameters.

1. First, let's edit our existing short.sh script to accept arguments. To avoid

losing our original script, we make a copy of the file under the name

short_transfer.sh

a. $ cp short.sh short_transfer.sh

2. Edit the file to include the added lines below

a. $ nano short_transfer.sh

i. #!/bin/bash

ii. # short.sh: a short discovery job

iii. printf "Start time: "; /bin/date

iv. printf "Job is running on node: "; /bin/hostname

v. printf "Job running as user: "; /usr/bin/id

vi. printf "Job is running in directory: "; /bin/pwd

vii. printf "The command line argument is: "; $1

viii. printf "Contents of $1 is "; cat $1

ix. cat $1 > output.txt

x. printf "Working hard..."

xi. ls -l $PWD

xii. sleep 20

xiii. echo "Science complete!"

b. Escape the script editor

i. Ctrl + X

ii. Yes

iii. Enter

c. Notice that with our changes, the new script will now print out

the contents of whatever file we specify in our arguments,

specified by the $1. It will also copy the contents of that file into

another file called output.txt.

3. Make the new script executable

a. $ chmod +x short_transfer.sh

4. Create Simple Text called Input.txt to pass to our script

a. “Hello FIU”

5. Test Locally to Ensure the script runs

a. $./short_transfer.sh input.txt

ii. Creating the Submit File

1. Create executable script

a. Save as tutorial02.submit

b. executable = short_transfer.sh

c. arguments = input.txt

Open Science Grid Submitting Tutorial Test -- 2022

i. Not to be included in file: Notice the added arguments

= input.txt information. The arguments option specifies

what arguments should be passed to the executable.

d. transfer_input_files = input.txt

e. transfer_output_files = output.txt

i. Not to be included file: The transfer_input_files and

transfer_output_files options need to be included as well.

When jobs are executed on the Open Science Pool via

HTCondor, they are sent only with files that are specified.

Additionally, only the specified output files are returned

with the job. Any output not transferred back, with the

exception of our error, output, and log files, is discarded

at the end of the job.

f. error = job.error

g. output = job.output

h. log = job.log

i. # The below are good base requirements for first testing jobs on

OSG,

j. request_cpus = 1

k. request_memory = 1 GB

l. request_disk = 1 GB

m. queue 1

2. Submit the new submit file using condor_submit.

a. $ condor_submit tutorial02.submit

c. Submitting Jobs Concurrently

i. What do we need to do to submit several jobs simultaneously? In the first

example, Condor returned three files: out, error, and log. If we want to submit

several jobs, we need to track these three files for each job. An easy way to do

this is to add the $(Cluster) and $(Process) macros to the HTCondor submit file.

Since this can make our working directory really messy with a large number of

jobs, let's tell HTCondor to put the files in a directory called log.

1. Here's what the third submit file looks like, called tutorial03.submit:

a. # We need the job to run our executable script, arguments and

files.

b. executable = short_transfer.sh

c. arguments = input.txt

d. transfer_input_files = input.txt

e. transfer_output_files = output.txt

f. error = log/job.$(Cluster).$(Process)error

g. output = log/job.$(Cluster).$(Process).output

h. log = log/job.$(Cluster).$(Process).log

i. request_cpus = 1

Open Science Grid Submitting Tutorial Test -- 2022

j. request_memory = 1 GB

k. request_disk = 1 GB

l. # Let's queue ten jobs with the above specifications

m. queue 10

2. Ensure that a log directory exists

a. $ mkdir -p log

3. Submit

a. $ condor_submit tutorial03.submit

4. After Submission

a. Find all of the output file in the log directory

i. $ ls ./log

ii. Where did the Jobs run?

1. It might be interesting to see where our jobs actually ran. To get that

information for a single job, we can use the command condor_history.

First, select a job you want to investigate and then run condor_history -

long jobid.

iii. Removing Jobs:

1. On occasion, jobs will need to be removed for a variety of reasons

(incorrect parameters, errors in submission, etc.). In these instances, the

condor_rm command can be used to remove an entire job submission or

just particular jobs in a submission. The condor_rm command accepts a

cluster id, a job id, or username and will remove an entire cluster of jobs,

a single job, or all the jobs belonging to a given user respectively. E.g. if

a job submission generates 100 jobs and is assigned a cluster id of 103,

then condor_rm 103.0 will remove the first job in the cluster. Likewise,

condor_rm 103 will remove all the jobs in the job submission and

condor_rm [username] will remove all jobs belonging to the user. The

condor_rm documenation has more details on using condor_rm including

ways to remove jobs based on other constraints.

